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Application I/O

 Applications have data models appropriate to 
domain

– Multidimensional typed arrays, images composed 
of scan lines, variable length records

– Headers, attributes on data

 I/O systems have very simple data models
– Tree-based hierarchy of containers
– Some containers have streams of bytes (files)
– Others hold collections of other containers 

(directories or folders)

 Someone has to map from one to the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL



Common Approaches to Application I/O

 Root performs I/O
Pro: trivially simple for “small” I/O
Con: bandwidth limited by rate one client can sustain
Con: may not have enough memory on root to hold all data

 All processes access their own file
Pro: no communication or coordination necessary between processes
Pro: avoids some file system quirks (e.g. false sharing)
Con: for large process counts, lots of files created
Con: data often must be post-processed to recreate canonical dataset
Con: uncoordinated I/O from all processes may swamp I/O system

 All processes access one file
Pro: only one file (per timestep etc.) to manage: fewer files overall
Pro: data can be stored in canonical representation, avoiding post-

processing
Con: can uncover inefficiencies in file systems (e.g. false sharing)
Con: uncoordinated I/O from all processes may swamp I/O system



Challenges in Application I/O

 Leveraging aggregate communication and I/O bandwidth of clients
 …But not overwhelming a resource limited I/O system with uncoordinated 

accesses!
 Limiting number of files that must be managed (also a performance issue)
 Avoiding unnecessary post-processing
 Avoiding file system quirks

 Often application teams spend so much time on this that they never get 
any further:
– Interacting with storage through convenient abstractions
– Storing in portable formats

 Computer science teams that are experienced in parallel I/O have 
developed software to tackle all of these problems
– Not the application's job.
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Application

File System

I/O Hardware

Software for Parallel I/O in HPC

 Applications require more software than just a parallel file system
 Support provided via multiple layers with distinct roles:

– Parallel file system maintains logical space, provides efficient access to 
data (e.g. PVFS, GPFS, Lustre)

– I/O Forwarding found on largest systems to assist with I/O scalability
– Middleware layer deals with organizing access by many processes

(e.g. MPI-IO, UPC-IO)
– High level I/O library maps app. abstractions to a structured,

portable file format (e.g. HDF5, Parallel netCDF)
 Goals: scalability, parallelism (high bandwidth), and usability

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

I/O Forwarding



Why All This Software?

“All problems in computer science can be solved by another level of 
indirection." -- David Wheeler

 Parallel file systems must be general purpose to be viable products
– Many workloads for parallel file systems still include serial codes
– Most of our tools still operate on the UNIX “byte stream” file model

 I/O forwarding addresses HW constraints and helps us leverage existing file 
system implementations at greater (unintended?) scales

 Programming model developers are not (usually) file system experts
– Implementing programming model optimizations on top of common file 

system APIs provides flexibility to move to new file systems
– Again, trying to stay as general purpose as possible

 High level I/O libraries mainly provide convenience functionality on top of 
existing APIs
– Specifically attempting to cater to specific data models
– Enable code sharing between applications with similar models
– Standardize how contents of files are stored

7
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The Parallel Virtual File System (PVFS)
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Parallel Virtual File System (PVFS)

 File-based storage model, very similar to object based storage model
– Fragments of files stored on distributed IO Servers (IOS)

• I/O servers manage their own local storage
– Single server type can also store metadata
– Clients perform accesses in terms of byte ranges in files (region-oriented)

 Available for Linux OS and IBM Blue Gene systems
 Tightly-coupled MPI-IO implementation

An example PVFS file system, with large astrophysics checkpoints distributed across multiple I/O 
servers (IOS), while small bioinformatics files are each stored on a single IOS.
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PVFS Architecture

 Communication performed over existing 
cluster network
– TCP/IP, InfiniBand, Myrinet, Portals

 Servers store data in local file systems 
(e.g. ext3, XFS)
– Local files store PVFS file strips
– Berkeley DB currently used for 

metadata (rather than files)
 Mixed kernel-space, user-space 

implementation
– VFS module in kernel with user-space 

helper process
– User-space servers, interface for 

kernel bypass on clients
 Commodity failover (e.g. Heartbeat) may 

be used to set up active-active server 
configuration for both metadata and data



11

...

Directory Metafile Datafiles

PVFS Files and Directories

 PVFS files are made up of objects holding
data (dataspaces) and a distribution function

 Directory dataspace holds metafile handles
 Metafile dataspace holds

– Permissions, owner, extended attributes
– References to dataspaces holding data
– Parameters for distribution function

 Datafiles hold the file data itself
– Usually one datafile on each server for parallelism

 Distribution function determines how data in datafiles maps into logical file
– By default file data is split into 64Kbyte blocks and distributed round-

robin into datafiles
– Because list of datafiles and distribution function don’t change, clients 

may cache this information indefinitely
• No communication with server holding metadata during I/O
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State, Consistency, and Caching

 In GPFS and Lustre, clients are allowed to hold on to important file system state
– Locks are used to keep these in sync with data on storage or to prevent other 

clients from accessing the data until it is committed
– Locks (which are state themselves) are further used for atomic I/O
– Problems: lock traffic is nondeterministic, client death becomes complicated

 PVFS does not hold critical file system state on clients (stateless)
– Clients may appear and disappear without impacting file system

• Much like a web server
– PVFS does provide a coherent view of file data

• Processes immediately see changes from others
– Does not provide atomic writes or reads

• Other software responsible for this coordination (e.g. MPI-IO)
– Does provide atomic metadata operations

• Creating and removing files and directories atomically change the name space
– No locks necessary!

 Without locks to maintain coherence, caching possibilities are very limited
– Clients cache immutable metadata on files allowing I/O without metadata access
– Data caching restricted to executables and mmapped files (read-only)
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MPI-IO Interface
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MPI-IO

 The Message Passing Interface (MPI) is an interface standard for writing 
message passing programs
– Most popular programming model on HPC systems

 MPI-IO is an I/O interface specification for use in MPI apps
 Data model is same as POSIX

– Stream of bytes in a file
 Features:

– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)

 Implementations available on most platforms (more later)
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Challenge: Describing Application Data

 MPI_Type_create_subarray can describe any N-dimensional subarray of 
an N-dimensional array

 In this case we use it to pull out a 2-D tile
 Tiles can overlap if we need them to
 Separate MPI_File_set_view call uses this type to select the file region

frame_size[1]

fr
am

e_
si

ze
[0

]

Tile 4

tile_start[1] tile_size[1]

tile_start[0]
tile_size[0]



0

100

200

300

400

500

600

700

1 4 8 16 25 50 75 100128
Number of Processes

Avg. Create Time (ms)

GPFS
Lustre
PVFS2

Challenge: Efficient File Creation

 File create rates can actually have a 
significant performance impact

 Improving the file system interface improves 
performance for computational science
– Leverage communication in MPI-IO layer

...

...

File system interfaces force all 
processes to open a file, causing 
a storm of system calls.

...

...

MPI-IO can leverage other 
interfaces, avoiding this 
behavior.

Time to Create Files Through MPI-IO
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Challenge: Coordinating I/O

 Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other processes 

 Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data
– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O
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The Two-Phase I/O Optimization

 Problems with independent, noncontiguous access
– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations
 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Aggregating to fewer nodes as part of this process is trivial (and implemented!)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution



19

Process 0 Process 0 Process 0Process 0

Challenge: Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region
 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
 Describing noncontiguous accesses with a single operation passes more knowledge 

to I/O system

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both
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Noncontiguous I/O: Data Sieving

Buffer

Memory

File

Data Sieving Read Sequence

 Data sieving is used to combine lots 
of small accesses into a single larger 
one
– Remote file systems (parallel or 

not) tend to have high latencies
– Reducing # of operations 

important
 Similar to how a block-based file 

system interacts with storage
 Generally very effective, but not as 

good as having a PFS that supports 
noncontiguous access
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MPI-IO Wrap-Up

 MPI-IO provides a rich interface allowing us to describe
– Noncontiguous accesses in memory, file, or both
– Collective I/O

 This allows implementations to perform many transformations that result in 
better I/O performance

 Still a big gap between application and MPI-IO storage models
 Forms solid basis for high-level I/O libraries

– But they must take advantage of these features!
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Higher Level I/O Interfaces
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Challenge: Improving Usability of Storage

 High level libraries are designed to make life easier for application writers
 Present APIs more appropriate for computational science

– Typed data
– Noncontiguous regions in memory and file
– Multidimensional arrays and I/O on subsets of these arrays

 Provide structure to files
– Well-defined, portable formats
– Self-describing
– Organization of data in file
– Interfaces for discovering contents

 Both of our example interfaces are implemented on top of MPI-IO
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PnetCDF Interface and File Format
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Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from 
Unidata
– Derived from their source code

 Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

 Features:
– C and Fortran interfaces
– Portable data format (identical to netCDF)
– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O

 Unrelated to netCDF-4 work
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netCDF/PnetCDF Files

 PnetCDF files consist of three regions
– Header
– Non-record variables (all dimensions specified)
– Record variables (ones with an unlimited 

dimension)
 Record variables are interleaved, so using more than 

one in a file is likely to result in poor performance due 
to noncontiguous accesses

 Data is always written in a big-endian format
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Data in PnetCDF

 Write case: “bimodal”
 Create a dataset (file)

– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset
 Read case similar: 

– No define mode
– Query dataset for attributes, variables
– Read data
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Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF multidimensional 
arrays

 Must create mapping of the in-memory FLASH data structures into a 
representation in netCDF multidimensional arrays

 Chose to
– Place all checkpoint data in a single file
– Impose a linear ordering on the AMR blocks

• Use 4D variables
– Store each FLASH variable in its own netCDF variable

• Skip ghost cells
– Record attributes describing run time, total blocks, etc.
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Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/* create dataset (file) */
status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);
/* define dimensions */
status = ncmpi_def_dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks);
status = ncmpi_def_dim(ncid, "dim_nxb",

nzones_block[0], &dim_nxb);
status = ncmpi_def_dim(ncid, "dim_nyb",

nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",

nzones_block[2], &dim_nzb);

Each dimension gets
a unique reference
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Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks;
dimids[1] = dim_nzb;
dimids[2] = dim_nyb;
dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used
for all variables
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Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb;  count_4d[2] = nyb;  count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a single variable ... 
*/

/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d, 
        unknowns, 1, mpi_type);

}
status = ncmpi_close(file_id);

Typical MPI buffer-
count-type tuple
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Inside PnetCDF Define Mode

 In define mode (collective)
– Use MPI_File_open to create file at create time
– Set hints as appropriate (more later)
– Locally cache header information in memory

• All changes are made to local copies at each process
 At ncmpi_enddef 

– Process 0 writes header with MPI_File_write_at 
– MPI_Bcast result to others
– Everyone has header data in memory, understands placement of all 

variables
• No need for any additional header I/O during data mode!
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Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable) 
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view  to define file region

• Contiguous region for each process in FLASH case
– MPI_File_write_all collectively writes data

 At ncmpi_close 
– MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
– PFS client code communicates with servers and stores data
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PnetCDF Wrap-Up

 PnetCDF gives us
– Simple, portable, self-describing container for data
– Collective I/O
– Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good performance
– Type conversion to portable format does add overhead

 Some limits on (CDF-2) file format:
– Fixed-size variable:  < 4 GiB
– One record's worth of record variable: < 4 GiB
– 232 -1 records 
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HDF5 Interface and File Format
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HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)
 Data Model:

– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on dataset, data

 Features:
– C, C++, and Fortran interfaces
– Portable data format
– Optional compression (not in parallel I/O mode)
– Data reordering (chunking)
– Noncontiguous I/O (memory and file) with hyperslabs
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Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets
– Datasets hold an array of typed data

• A datatype describes the type (not an MPI datatype)
• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another 
dataset
• Also have a datatype and dataspace
• May only be accessed as a unit
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HDF5 Data Chunking

 Apps often read subsets of arrays (subarrays)
 Performance of subarray access depends in part on how data is laid out in 

the file
– e.g. column vs. row major

 Apps also sometimes store sparse data sets
 Chunking describes a reordering of array data

– Subarray placement in file determined lazily
– Can reduce worst-case performance for subarray access
– Can lead to efficient storage of sparse data

 Dynamic placement of chunks in file requires coordination
– Coordination imposes overhead and can impact performance
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Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is determined at write time
 In HDF write call: 

– Processes communicate to determine file layout
• Process 0 performs metadata updates

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• If this was turned on
 User could have defined noncontiguous region in memory or file
 In FLASH application, data is kept in native format and converted at read 

time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew



40

Concluding Remarks
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Wrapping Up

 Computational science applications present a complex set of challenges with 
respect to their I/O needs
– Very high degrees of concurrency in access
– Very high bandwidth requirements, bursty I/O
– Effective means for mapping scientific data models into storage 

structures
 A layered software architecture has evolved (and is still evolving) to address 

the needs of these applications
– Relies on adequate hardware resources
– Also typically relies on a commercial parallel file system
– Software specific to HPC helps bridge the gap

 The gap is growing between the needs of computational science applications 
and the capabilities offered by storage vendors and commercial parallel file 
systems
– Opportunities for new approaches to make their way into the I/O 

software stack
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– http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/
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